We apply topological data analysis (TDA) to speech classification problems and to the introspection of a pretrained speech model, HuBERT. To this end, we introduce a number of topological and algebraic features derived from Transformer attention maps and embeddings. We show that a simple linear classifier built on top of such features outperforms a fine-tuned classification head. In particular, we achieve an improvement of about $9\%$ accuracy and $5\%$ ERR on four common datasets; on CREMA-D, the proposed feature set reaches a new state of the art performance with accuracy $80.155$. We also show that topological features are able to reveal functional roles of speech Transformer heads; e.g., we find the heads capable to distinguish between pairs of sample sources (natural/synthetic) or voices without any downstream fine-tuning. Our results demonstrate that TDA is a promising new approach for speech analysis, especially for tasks that require structural prediction.
translated by 谷歌翻译
社交媒体营销在向广泛的受众群体推广品牌和产品价值方面起着至关重要的作用。为了提高其广告收入,诸如Facebook广告之类的全球媒体购买平台不断减少品牌有机帖子的覆盖范围,推动品牌在付费媒体广告上花费更多。为了有效地运行有机和付费社交媒体营销,有必要了解受众,调整内容以适合其兴趣和在线行为,这是不可能大规模手动进行的。同时,各种人格类型分类方案(例如Myers-Briggs人格类型指标)使得通过以统一和结构化的方式对受众行为进行分类,可以在更广泛的范围内揭示人格特质和用户内容偏好之间的依赖性。研究界尚待深入研究这个问题,而到目前为止,尚未广泛使用和全面评估,而不同人格特征对内容建议准确性的影响水平尚未得到广泛的利用和全面评估。具体而言,在这项工作中,我们通过应用一种新型人格驱动的多视图内容推荐系统,研究人格特征对内容推荐模型的影响,称为人格内容营销推荐引擎或Persic。我们的实验结果和现实世界案例研究不仅表明Persic执行有效的人格驱动的多视图内容建议,而且还允许采用可行的数字广告策略建议,当部署时能够提高数字广告效率超过420 %与原始的人类指导方法相比。
translated by 谷歌翻译
开放信息提取(OpenIE)的最先进的神经方法通常以自回旋或基于谓词的方式迭代地提取三重态(或元组),以免产生重复。在这项工作中,我们提出了一种可以平等或更成功的问题的不同方法。也就是说,我们提出了一种新型的单通道方法,用于开放式启发,该方法受到计算机视觉的对象检测算法的启发。我们使用基于双方匹配的订单不足损失,迫使独特的预测和用于序列标签的仅基于变压器的纯编码体系结构。与质量指标和推理时间相比,与标准基准的最新模型相比,提出的方法更快,并且表现出卓越或类似的性能。我们的模型在CARB上的新最新性能为OIE2016评估,而推断的速度比以前的最新状态更快。我们还在两种语言的零弹奏设置中评估了模型的多语言版本,并引入了一种生成合成多语言数据的策略,以微调每个特定语言的模型。在这种情况下,我们在多语言Re-OIE2016上显示了15%的性能提高,葡萄牙语和西班牙语的F1达到75%。代码和型号可在https://github.com/sberbank-ai/detie上找到。
translated by 谷歌翻译
在这项工作中,我们探讨了在线评论的建设性方面:用户提供有关商品,场所,服务和其他感兴趣物品的咨询,提示,请求和建议。为降低构建特定标签集的分类器所需的培训成本和注释工作,我们展示并评估了以标签完全看不见的方式提出了几种基于意外的零点零点方法来提出了建议分类。特别是,我们介绍了将目标类标签分配给英语语言的句子的策略,用户意图显着提高了预测质量。拟议的策略是通过全面的实验研究评估,验证了我们的定量和定性的结果。
translated by 谷歌翻译
Nowadays, feature selection is frequently used in machine learning when there is a risk of performance degradation due to overfitting or when computational resources are limited. During the feature selection process, the subset of features that are most relevant and least redundant is chosen. In recent years, it has become clear that, in addition to relevance and redundancy, features' complementarity must be considered. Informally, if the features are weak predictors of the target variable separately and strong predictors when combined, then they are complementary. It is demonstrated in this paper that the synergistic effect of complementary features mutually amplifying each other in the construction of two-tier decision trees can be interfered with by another feature, resulting in a decrease in performance. It is demonstrated using cross-validation on both synthetic and real datasets, regression and classification, that removing or eliminating the interfering feature can improve performance by up to 24 times. It has also been discovered that the lesser the domain is learned, the greater the increase in performance. More formally, it is demonstrated that there is a statistically significant negative rank correlation between performance on the dataset prior to the elimination of the interfering feature and performance growth after the elimination of the interfering feature. It is concluded that this broadens the scope of feature selection methods for cases where data and computational resources are sufficient.
translated by 谷歌翻译
Determining and predicting reservoir formation properties for newly drilled wells represents a significant challenge. One of the variations of these properties evaluation is well-interval similarity. Many methodologies for similarity learning exist: from rule-based approaches to deep neural networks. Recently, articles adopted, e.g. recurrent neural networks to build a similarity model as we deal with sequential data. Such an approach suffers from short-term memory, as it pays more attention to the end of a sequence. Neural network with Transformer architecture instead cast their attention over all sequences to make a decision. To make them more efficient in terms of computational time, we introduce a limited attention mechanism similar to Informer and Performer architectures. We conduct experiments on open datasets with more than 20 wells making our experiments reliable and suitable for industrial usage. The best results were obtained with our adaptation of the Informer variant of Transformer with ROC AUC 0.982. It outperforms classical approaches with ROC AUC 0.824, Recurrent neural networks with ROC AUC 0.934 and straightforward usage of Transformers with ROC AUC 0.961.
translated by 谷歌翻译
Reinforcement learning (RL) problems can be challenging without well-shaped rewards. Prior work on provably efficient RL methods generally proposes to address this issue with dedicated exploration strategies. However, another way to tackle this challenge is to reformulate it as a multi-task RL problem, where the task space contains not only the challenging task of interest but also easier tasks that implicitly function as a curriculum. Such a reformulation opens up the possibility of running existing multi-task RL methods as a more efficient alternative to solving a single challenging task from scratch. In this work, we provide a theoretical framework that reformulates a single-task RL problem as a multi-task RL problem defined by a curriculum. Under mild regularity conditions on the curriculum, we show that sequentially solving each task in the multi-task RL problem is more computationally efficient than solving the original single-task problem, without any explicit exploration bonuses or other exploration strategies. We also show that our theoretical insights can be translated into an effective practical learning algorithm that can accelerate curriculum learning on simulated robotic tasks.
translated by 谷歌翻译
Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3Daware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Project page: https://snap-research.github.io/discoscene/
translated by 谷歌翻译
Imitation learning (IL) is a simple and powerful way to use high-quality human driving data, which can be collected at scale, to identify driving preferences and produce human-like behavior. However, policies based on imitation learning alone often fail to sufficiently account for safety and reliability concerns. In this paper, we show how imitation learning combined with reinforcement learning using simple rewards can substantially improve the safety and reliability of driving policies over those learned from imitation alone. In particular, we use a combination of imitation and reinforcement learning to train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision risk. To our knowledge, this is the first application of a combined imitation and reinforcement learning approach in autonomous driving that utilizes large amounts of real-world human driving data.
translated by 谷歌翻译
Cell-free multi-user multiple input multiple output networks are a promising alternative to classical cellular architectures, since they have the potential to provide uniform service quality and high resource utilisation over the entire coverage area of the network. To realise this potential, previous works have developed radio resource management mechanisms using various optimisation engines. In this work, we consider the problem of overall ergodic spectral efficiency maximisation in the context of uplink-downlink data power control in cell-free networks. To solve this problem in large networks, and to address convergence-time limitations, we apply scalable multi-objective Bayesian optimisation. Furthermore, we discuss how an intersection of multi-fidelity emulation and Bayesian optimisation can improve radio resource management in cell-free networks.
translated by 谷歌翻译